chemistry for peace not for war

hanya DIA yang dapat menghentikan hatiku

TEORI VSEPR DAN GEOMETRI MOLEKUL

Geometri molekul atau sering disebut struktur molekul atau bentuk molekul yaitu gambaran tiga dimensi dari suatu molekul yang ditentukan oleh jumlah ikatan dan besarnya sudut-sudut yang ada disekitar atom pusat.

Perlu ditekankan istilah molekul hanya berlaku untuk atom-atom yang berikatan secara kovalen. Karena hal inilah, istilah geometri molekul hanya ditujukan pada senyawa kovalen ataupun ion-ion poliatomik.

Di dalam sebuah molekul atau ion poliatom terdapat atom pusat dan substituent-substituen. Substituent yang ada terikat pada atom pusat. Substituent-substituen ini dapat berupa atom (misalnya Br atau H) dan dapat pula berupa gugus (misalnya NO2).

Terkadang sulit untuk menentukan atom pusat dari suatu molekul atau ion poliatomik. Berikut beberapa cara yang dapat digunakan untuk menentukan atom pusat yaitu sebagai berikut.

1. Atom pusat biasanya ditulis di awal rumus formulanya.

2. Atom pusat biasanya atom yang lebih elektropositif atau kurang elektronegatif.

3. Atom pusat biasanya atom yang memiliki ukuran lebih besar dari atom atau susbstituen-substituen yang ada. H ukuran paling kecil sehingga tidak pernah berlaku sebagaia atom pusat.

Contoh

BeCl2 atom pusatnya adalah Be

NH3 atom pusatnya adalah N

Elektron valensi atom pusat yang digunakan pada pembentukan senyawa kovalen terkadang digunakan untuk membentuk ikatan kadang tidak digunakan. Elektron yang tidak digunakan ditulis sebagai pasangan elektron bebas (PEB), sedangkan elektron yang digunakan dalam pembentukan ikatan ditulis sebagai pasangan elektron ikatan (PEI). Selain PEB dan PEI pada atom pusat dapat pula terdapat elektron tidak berpasangan seperti pada molekul NO2.

Dalam suatu molekul elektron-elektron tersebut saling tolak-menolak karena memiliki muatan yang sama. Untuk mengurangi gaya tolak tersebut atomatom yang berikatan membentuk struktur ruang tertentu hingga tercapai gaya tolak yang minimum. Akibat yang ditimbulkan dari tolakan yang yang terjadi yaitu mengecilnya sudut ikatan dalam molekul. Urutan gaya tolak dimulai dari gaya tolak yang terbesar yaitu sebagai berikut.

1. Gaya tolak antar sesama elektron bebas (PEB vs PEB)

2. Gaya tolak antara pasangan elektron bebas dengan elektron ikatan (PEB vs PEI)

3. Gaya tolak antar pasangan elektron ikatan (PEI vs PEI).

 

Teori yang digunakan untuk mempelajari gaya tolak antar sesama elektron valensi disebut teori VSEPR (Valence Shell Electron Pair Repulsion) yang dikembangkan oleh Gillespie dan Nylholm sehigga sering disebut sebagai teori Gillespie-Nylholm. Dengan teori ini ternyata struktur ruang suatu senyawa dapat ditentukan dengan memperhatikan elektron bebas dan elektron ikatan dari senyawa yang bersangkutan.

Awal perkembangan teori VSEPR, pada tahun 1963 berdasarkan ide-ide yang kembangkan oleh Sidwick dan Powell, Gillespie memberi ceramah tentang teori VSEPR dalam suatu pertemuan yang di adakan oleh American Chemical Society (ACS).

Setelah memberi ceramah ia ditantang oleh perserta ceramah yang lain yaitu Rundle. Rundle menyatakan teori VSEPR terlalu “naive” dan satu-satunya cara pendekatan dalam meramalkan bentuk molekul adalah teori orbital molekul. Setelah mengadakan diskusi yang cukup panjang Gillespie menantang Rundle meramal bentuk molekul dari ksenon fluorida (XeF6) yang pada saat itu baru saja disintesis oleh Malm dan rekan-rekannya.

Berdasarkan terori orbital molekul, Rundle menyatakan bentuk molekul XeF6 adalah oktahedral normal. Sedangkan Gillespie berdasarkan teori VSEPR menyatakan bentuk molekul XeF6 adalah oktahedral terdistorsi.

Berdasarkan hasil eksperimen metode spektroskopi inframerah terhadap XeF6 yang dilakukan oleh Bartell diperoleh fakta bahwa bnetuk molekul XeF6 adalah oktahedral terdistorsi yang diramalkan Gillespie. Sejak saat itu teori VSEPR menjadi terkenal dan Bartell menyatakan “The VSEPR model some capture the essence of molecular behaviour” .

 

Beberapa Bentuk Molekul Berdasarkan Teori VSEPR

Pada penentuan struktur ruang molekul-molekul berdasarkan teori VSEPR umumnya atom pusat atom pusat dilambangkan dengan A, jumlah atom yang diikat atau jumlah pasangan elektron ikatan (PEI) dilambangkan dengan X dan pasangan elektron bebas atom pusat dilambangkan dengan E. Berbagai struktur ruang molekul dapat dilihat pada Tabel.

Nama

Sudut ikatan

Jumlah PEI (X)

Jumlah PEB (E)

Rumus (AXnEm)

Bentuk Molekul

Contoh senyawa

Linear

180

2

0

AX2

clip_image001

CO2

Trigonal planar

120

3

0

AX3

clip_image002

BF3

Planar huruf V

2

1

AX2E

clip_image004

SO2

Tetrahedral

4

0

AX4

clip_image005

CH4

Piramida trigonal

3

1

AX3E

clip_image006

NH3

Planar bentuk V

2

2

AX2E2

clip_image007

H2O

Bipiramida trigonal

5

0

AX5

clip_image009

PCl5

Bipiramida trigonal

4

1

AX4E

clip_image011

SF4

Planar bentuk T

3

2

AX3E2

clip_image013

ClF3

Linear

2

3

AX2E3

clip_image015

XeF2

Oktahedral

90

6

0

AX6

clip_image017

SF6

Piramida segiempat

5

1

AX5E

clip_image019

BrF5

Segiempat datar

4

2

AX4E2

clip_image021

XeF4

Keterangan: PEI = pasangan elektron ikatan, PEB = pasangan elektron bebas, A= atom pusat, Xn = jumlah atom yang diikat atom pusat, Em = jumlah pasangan elektron bebas

Pada Tabel di atas, nama bentuk molekul yang diberi huruf tebal merupakan bentuk molekul dasar karena semua elektron valensi atom pusat digunakan untuk membentuk ikatan.

Jika terdapat elektron yang tidak digunakan untuk membentuk ikatan atau elektron bebas ditunjukan dengan garis putus-putus kemudian dua titik yang menyatakan pasangan elektron bebas.

 

LANGKAH-LANGKAH MERAMAL BENTUK MOLEKUL

Langkah-langkah yang digunakan untuk meramal struktur molekul tidak berbeda jauh dengan langkah-langkah yang digunakan untuk menggambar struktur Lewis suatu molekul atau ion poliatomik. Langkah-langkah yang digunakan untuk meramal bentuk molekul sebagai berikut.

1. Menentukan atom pusat.

2. Tuliskan jumlah elektron valensi dari atom pusat.

3. Menentukan jumlah elektron valensi dari masing-masing substituen jika berupa atom.

4. Satu elektron dari substituen dipasangkan dengan satu elektron dari atom pusat sehingga membentuk pasangan elektron (pasangan elektron ikatan, PEI). Perlu diperhatikan bahwa, bahwa jumlah elektron atom pusat tidak selalu memenuhi kaidah oktet. Jika masih terdapat substituen dan masih terdapat elektron pada atom pusat, maka semuanya harus dipasangkan.

5. Jika semua susbtituen telah dipasangkan dengan elektron atom pusat dan masih terdapat elektron yang tidak berpasangan, maka elektron tersebut tetap ditulis pada atom pusat sebagai elektron bebas atau pasangan elektron bebas (PEB).

6. Jika berupa ion poliatomik, maka setelah semua substituen dipasangkan kurangi elektron jika ion bermuatan positif dan tambahkan elektron jika ion bermuatan positif.

7. Menentukan bentuk molekul serta memperkirakan besarnya sudut-sudut ikatan disekitar atom pusat dengan memperhatikan tolakan-tolakan yang terjadi agar diperoleh bentuk dengan tolakan yang minimum.

 

Contoh berilium klorida, BeCl2

Be sebagai atom pusat memiliki 2 elektron valensi dan Cl sebagai substituen memiliki 7 elektron valensi. Setelah satu elektron valensi dipasangkan dengan satu elektron dari satu atom Be, masih terdapat satu elektron bebas pada atom Be. Oleh sebab itu, 1 elektron tersebut dipasangkan dengan satu elektron dari atom Cl. Setelah semua dipasangkan tidak ada lagi elektron bebas pada atom Be. Agar tolakan minimum maka kedua atom Cl letaknya berlawanan membentuk sudut 180°, seperti pada Gambar.

clip_image023

 

Contoh Boron Trifluorida BF3

Boron sebagai atom pusat memiliki 3 elektron valensi sehingga setelah berikatan dengan 3 atom F maka tidak ada lagi elektron bebas disekitarnya. Agar tolakan pasangan elektron ikatan minimal maka setiap ikatan menata diri mengarah pada pojok-pojok segitiga sama sisi. Bentuk molekul seperti ini disebut trigonal planar dengan sudut ikatan sebesar 120°.

clip_image025

 

Contoh Metana, CH4

clip_image027

Agar keempat PEI tolakan minimal maka letaknya mengarah pada pojok-pojok tetrahedral. CH4 berbentuk tetrahedral normal dengan sudut ikatan H-C-H sebesar 109,5°.

 

Contoh Fosfor(V) Fluorida PF5

clip_image029clip_image031

Lima PEI posisinya `mengarah pada pojok-pojok trigonal bipiramidal. Bentuk PF5 adalah trigonal bipiramidal. Ikatan P-F yang tegak disebut ikatan aksial, sedangkan ikatan P-F yang posisinya mendatar disebut ikatan ekuatorial.

PEI P-F aksial bertolakan dengan 3 PEI P-F ekuatorial dengan sudut ikatan 90° dan PEI P-F aksial yang lain dengan sudut 180°. PEI P-F ekuatorial bertolakan dengan 2 PEI P-F ekuatorial yang lain dengan sudut ikatan 120° dan dengan 2 PEI P-F aksial dengan sudut ikatan 90°.

PEI P-F aksial mempunyai 3 tolakan dengan sudut 90°, sedangkan PEI P-F ekuatorial hanya memiliki 2 tolakan dengan sudut 90°. Karena hal inilah, maka dapat dianggap tolakan yang dialami oleh PEI P-F ekuatorial lebih lemah daripada tolakan yang dialami oleh PEI P-F aksial. Atau dapat dikatakan ikatan ekuatorial lebih longgar daripada posisi aksial.

Tolakan yang dialami oleh PEI P-F aksial akan berkurang apabila PEI aksial menjadi lebih kurus atau lebih ramping. Hal ini dapat dicapai bila ikatan P-F aksial lebih panjang daripada ikatan P-F ekuatorial. Hal ini telah dibuktikan dengan eksperimen bahwa ikatan P-F aksial dalam molekul PF5 lebih panjang dibanding ikatan P-F ekuatorial.

Dalam sebuah molekul yang atom pusanya mengikat susbstituen sama dengan bentuk molekul trigonal bipiramidal, ikatan aksial selalu lebih panjang daripada ikatan ekuatorial.

 

Belerang Heksafluorida, SF6

clip_image033

Agar enam PEI tolakan minimal maka posisi 6 ikatan mengarah pada pojok-pojok oktahedral normal.

 

Iod heptafluorida, IF7

clip_image035

7 PEI posisinya mengarah pada pojok-pojok dari pentagonal bipiramidal agar tolakan antar PEI menjadi minimal.

 

Keterbatasan Teori VSEPR

Seperti teori-teori yang lain, teori VSEPR juga memiliki kelemahan-kelemahan. Beberapa diantaranya sebagai berikut.

Banyak senyawa logam transisi strukturnya tidak dapat dijelaskan menggunakan teori VSEPR. Teori VSPER gagal meramalkan struktur NH3+. Berdasarkan teori VSEPR bentuk molekul NH3+ adalah trigonal bipiramidal dengan sudut ikatan lebih kecil dari 120° (sedut normal untuk atom dengan bilangan koordinasi 3) tetapi lebih besar dari 109,47° (sudut normal untuk atom bilangan koordiansi 4) karena terdapat satu elektron tidak berpasangan pada atom N.

Namun berdasarkan hasil eksperimen ternyata bentuk dari NH3+ adalah segitiga planar dengan sudut ikatan sebesar 120°. Hal ini disebabkan elektron bebas terdistribusi secara merata pada bagian depan belakang atom N. Bentuk trigonal piramidal dan trigonal planar seperti yang ditunjukan pada gambar.

clip_image037

Gambar bentuk molekul trigonal piramidal dan trigonal planar dari NH3+

 

Struktur senyawa halida triatomik dengan logam golongan 2 tidaklah linear pada fase gas seperti yang diprediksi oleh teori VSEPR, melainkan berbentuk tekuk (sudut X-M-X : CaF2, 145°; SrF2, 120°; BaF2, 108°; SrCl2, 130°; BaCl2, 115°; BaBr2, 115°; BaI2, 105°). Gillespie mengajukan bahwa ini disebabkan oleh interaksi ligan dengan elektron pada inti atom logam yang menyebabkan polarisasi atom, sehingga kelopak dalam atom tidaklah simetris berbentuk bola dan memengaruhi geometri molekul.

Teori VSEPR dapat digunakan untuk meramal bentuk molekul dari hidrida-hidrida unsur-unsur pada periode 3 dan 4 seperti H2S, H2Se, PH3, AsH3 dan SbH3, namun gagal meramal besar sudut ikatan yang ada.

Berdasarkan teori VSEPR H2S dan H2Se berbentuk huruf V dengan besar sudut ikatan H-E-H (E=S atau Se) sekitar 104,5°C seperti sudut ikatan H2O. Namun berdasarkan eksperimen diperoleh besar sudut H-E-H mendekati 90° walaupun berbentuk V.

Sedangkan bentuk molekul PH3, AsH3 dan SbH3 berdasarkan teori VSEPR berbentuk trigonal piramidal dengan sudut ikatan H-E-H (E = P, As atau Sb) sekitar 107,3° seperti sudut ikatan NH3. Namun berdasarkan eksperimen diperoleh bahwa besar sudut ikatan H-E-H m,endekati 90° walaupun berbentuk trigonal piramidal.

 

FILE ARTIKEL INI SILAKAN DOWNLOAD DISINI….!!!!!

ARTIKEL YANG DISARANKAN :

12 responses to “TEORI VSEPR DAN GEOMETRI MOLEKUL

  1. Ferrykholil Hsnulforever 7 Agustus 2012 pukul 15:15

    makasih ats ilmunya……..
    moga menjadi lebih oke kedepannya……..

  2. Jewelfizzdz 12 Maret 2012 pukul 22:49

    Thanks for the info, tapi masih ada hal yg ingin ku tanyakan. Kira2, bagaimana cara mencari besar sudut ikatan antar molekul? Mohon dijawab^^

  3. Pingback: Spektrofotometri « Alex Trisno

  4. Nours Qorind 7 Desember 2011 pukul 18:50

    tpi msih da materi yang gak ada

  5. Nours Qorind 7 Desember 2011 pukul 18:48

    bagus…. smua lengkap tentang cemistry..
    i like it

  6. hany 17 November 2011 pukul 17:08

    arigatou gozaimasu

  7. rhinesance 7 Oktober 2011 pukul 17:03

    Jadi kalau senyawa ion gmna???

Tinggalkan komentar